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ABSTRACT This Paper deals with the optimum energy management of Microgrid (MG) having
Energy-Storage System(ESS)s. Recently, the importance of retaining the profits of MG owners and the
needs of providing additional requirements to the electric grid are rising. To accommodate these needs
systematically, the Quadratic Programming (QP), one of the simplest and effective optimization method,
is gaining attention. The QP has been used for similar cases before, but unlike the known advantages of
early QP studies, some of the subsequent papers have been conducted in an inappropriate direction and may
be overshadowed. Therefore in this paper, an extended and more practical QP cost function considering
the realistic operating conditions is proposed, and the advantages of the original methods are revisited with
comparisons. As a result, the proposedmethod retains the genuine features of QP, such as peak power shaving
and assuring the power reserve rate, and can be simply extended to include Electric Vehicle (EV)s into the
optimization. Additionally, the practical issues of implementing the QP in real-time have been discussed
and resulted in both improved optimization speed by 58% using the cost function reformulation and the
robustness with the forecast mismatching.

INDEX TERMS Quadratic programming, optimization, real-time simulation, microgrid, energy storage
system, photovoltaic, electric vehicle, charging.

NOMENCLATURE
DCMG DC Micro-grid
ESS Energy Storage System
BESS Battery Energy Storage System
PV Photovoltaic
WT Wind turbine
EOL End of Life
MPPT Maximum Power Point Tracking
EV Electric Vehicle
AFE Active Front End Converter
V2G Vehicle to Grid
BMS Battery Management System
PPV (t) Power generation from PV at time t
PWT (t) Power generation from WT at time t
PESS (t) Power for an ESS charging(+) /

discharging(-) at time t
PEV (t) Power for an EV charging(+)/

discharging(-) at time t
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PEV,i (t) Power for ith EV charging(+)/
discharging(-) at time t

P∗EV,i (t) Power reference for ith EV charging(+)/
discharging(-) at time t

PGRID (t) Power from the AC grid to DCMG at
time t

PLOAD (t) The load connected to the DCMG at
time t

BSoC (t) Battery SoC of ESS at time t
BEV (t) EV SoC at time t
BSoC (t− 1) BSoC at one step before the time t
1Ts Time step for receding horizon
PGRID,Max Maximum power limit of PGRID (kW)
PGRID,Min Minimum power limit of PGRID (kW)
PESS,Max Charging power limit for ESS (kW)
PESS,Min Discharging power limit for ESS (kW)
PEV,Max Charging power limit for an EV (kW)
PEV,Min Discharging power limit for an EV (kW)
PEV,Max,i Charging power limit for ith EV (kW)
BSoC,Max Upper bound for BESS battery SoC
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BSoC,Min Lower bound for BESS battery SoC
BEV,Max Upper bound for EV battery SoC
BEV,Min Lower bound for EV battery SoC
EESS The energy in ESS (kWh)
J The objective function for QP
cSoC The weighting factor of the ESS SoC

management
cGRID (t) The weighting factor of the PGRID
cEV,i The weighting factor of the ESS SoC

management
B∗SoC(t) Target SoC of the BESS at t
BSoC (24:00) Equality constraint for BSoC at 24:00
BSoC(0) Equality constraint for BSoC at 00:00
x State vector for QP
Aieq Inequality constraints coefficient

vector A
bieq Inequality constraints coefficient

vector b
Aeq Equality constraints coefficient vector A
bieq Equality constraints coefficient vector b
lb The lower bound of QP solution
ub Upper bound of QP solution
H Hessian matrix H for QP
f Coefficient vector of QP
�T Transpose of a vector/matrix �
N Receding horizon window size
PG (t) N-sized time horizon vector of PGRID (t)
PN (t) N-sized time horizon vector of PESS (t)
PL (t) N-sized time horizon vector of PLOAD (t)
PEV,i (t) N-sized time horizon vector of PEV,i (t)
P∗EV,i (t) N-sized time horizon vector of P∗EV,i (t)
dN (t) N-sized time horizon vector of PPV (t)
BN (t) N-sized time horizon vector of BSoC(t)
B∗N (t) N-sized time horizon vector of B∗SoC (t)
cG (t) N-sized weighting vector for PG (t)

made of a time series with cGRID (t)
1N×1 One valued N-sized vector
0N×N Zero valued N-sized square matrix
LT N-sized lower triangular square matrix
UT N-sized upper triangular square matrix
IN N-sized diagonal matrix
PPV ,Actual Actual PPV as a disturbance
PPV_EST@x Estimated PPV at time x for a day
PGRID,Ideal Optimal PGRID solution by known

disturbance PPV ,Actual

PGRID,Real Optimal PGRID solution by estimated
disturbance PPV_EST@x

BSoC,Ideal BSoC result by the known
disturbance PPV ,Actual

BSoC,Real BSoC result by the estimated
disturbance PPV_EST@x

BSoC,NewReal Corrected BSoC,Real to maximize the
utilization of the battery

I. INTRODUCTION
The inherent intermittence of renewable energy sources such
as PV and wind has increased the use of energy stor-
age devices, which has led to the rapid growth of the
battery-related industry. Despite such expansion, it is still
considered that we are at the beginning of the ESS penetration
phase and may not meet the requirements for a fully sus-
tainable and reliable energy solution shortly. As an example,
actively ongoing renewable energy plans in California still
seem to be an ambitious goal to reach 100% renewable, as hot
summer demands unprecedented ESS capacity, and winter
requires constant baseline power by the conventional power
sources [1]. However, even though the technological and
economic issues we are facing are non-negligible, we must
speed up replacing destructive energy sources such as nuclear
fission, fossil fuels, etc. with environment-friendly and sus-
tainable ones. Fortunately, we see a continuous growth of the
total number of MG having renewable energy sources with
ESSs [2], [3], and the renewables are the only source that
posted growth in demand in the recent global outbreak [4].

However, due to the expansion of the localized VRE-based
power generation, unexpected power curtailment is prevailing
not to affect the stability of the existing power system, and
the importance of the optimal energy utilization of the VRE
is rising [5]–[8].

Therefore, the optimal operation of the MG having ESSs
have been investigated [6]–[8], [15]–[17]. It has shown that
BESS can effectively work as a solution for daily power
intermittency and improve grid stability from many exist-
ing MGs test sites. It also brings flexible real-time power
dispatch capability and enables the ancillary support fea-
tures, such as reactive power, voltage, frequency support, and
harmonics filtering or cancelation, which were traditionally
provided by additional power generators and voltage regu-
lators. [9]–[11], [14], [18], [19]. Also, there were attempts
to find an optimal running schedule systematically using
different types of available optimization methods such as
single-objective optimization, multi-objective optimization,
heuristic, and metaheuristic optimization, etc [5], [20], [21].
As previous researches addressed, to run an MG assisted by
the ESS may not be a simple matter. With that said, the objec-
tive function that describes the physical relation of the power
flow and the respective conservative energy law is pretty intu-
itive, and we may not need such a highly sophisticated opti-
mization algorithm, but a simple convex optimization [22].
As an example, three BESSs were scheduled to achieve the
curtailment free operation of a PV energy in a DCMG using
the quadratic form of the cost function formulation [23].
Also, an economic schedule of hydrogen-based ESS in an
MG having other different types of ESSs like battery and
supercapacitor, and theVREs like PV andwindwas discussed
using the quadratic formulation. It dealt with the degradation
of MG components and the dynamics of the system [24].
As introduced, themain contribution of [23], [24] was to open
up the usability of the QP in deciding the power dispatch of
ESSs.
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Furthermore, more QP oriented ESS power dispatching
methods were introduced. Advanced features such as peak
shaving and minimizing the electric bill were discussed
together with a detailed explanation of the implementation.
In [25], it suggested the day-to-day optimization technique
using the forecasted PV data along with a load profile to
determine the hourly power dispatch of an ESS during the
day. It performs the optimization once more during the day
when the corrective action is needed, i.e., when the forecast
error is too large. Another method is the optimization using
the receding horizon, similar to [23], [24]. It repeats the opti-
mization at each time interval of the time horizon to obtain
the next time step ESS action [26]. Principally, [25], [26]
are using almost the same objective function in the aspect
of maintaining the SoC of BESS. The difference is that [25]
included a battery charging/discharging slope term to limit
the battery’s participation to the grid, which would affect the
battery EOL and [26] added the effect of battery cost depre-
ciation, which resulted in a negligible impact on determining
the optimal solution in the end. However, both methods have
the same issue caused by an equality constraint for the battery
SoC management, which was not appeared in [23], [24]. As a
result, the cost function becomes vulnerable to disturbance,
especially when exposed to rapid changes, such as power
generation changes in renewables, load changes, or sudden
ancillary service requests.

In this paper, By using the genuine QP form for the SoC
management of an ESS [24], the general and simple form of
the QP cost function is proposed. Many comparative analysis
are employed to show the risk of using the equality constraints
inadequately and the advantage of the genuine cost function.
Computational burden has drastically decreased using the
proposed QP control-variable simplification by minimizing
the number of decision variable in the cost function. Also,
the way of including EV charging function into the QP cost
function is explained and verified with simulation. Moreover,
the practical issue when implementing power dispatch in real-
time have been addressed. Even though the existing papers
discussed real-time power dispatch, how newly measured
data is used instantaneously and how the future information is
adopted in RT may still be ambiguous [26], or the result may
not be accurate due to a too sparse optimization interval [25].
So the problems that arise when using future predictions for
optimization is explained and a way to reduce the side-effect
of the prediction errors is explained. By having so, this paper
aims to make it more feasible to keep the profits of MG oper-
ators stable without significant losses. Ultimately, we may be
able to ensure the feasibility of stable MG business.

II. SYSTEM DESCRIPTION
We will consider an optimal operation of the DCMG given in
FIGURE 1. A photovoltaic power generation system (Photo
Voltaic) and a wind power generation system (Wind Turbine)
are connected to the DC-bus and deliver powers PPV and
PWT, respectively, through theMPPT operation of power con-
verters. A BESS and an EV charger can charge or discharge

FIGURE 1. AC Grid connected DCMG.

powers from/to the DC-bus through bidirectional DC/DC
converters. PESS and PEV denote the charging (plus sign) and
discharging (minus sign) powers of BESS and EV, respec-
tively. The DC-bus is connected to the AC-grid through an
AFE. PGRID names the power flow between AC-grid and
DCMG, the positive sign means power consumption in the
DCMG, and the negative sign means power injection into the
AC-grid. So, any component pouring energy to the DC bus,
which decreases in PGRID, has a negative sign.

The objective of DCMG is minimizing the electricity
billing (or maximizing the benefit of the operator) over future
time horizon while satisfying constraints of I) BESS SoC
low/high limit; II) maximum/minimum power limit of each
element in DCMG. It is also required to follow the charging
profile of EV. The decision variables for the optimization
would be PESS and PEV that can be positive for charging
and negative for discharging cases. The future values of PPV ,
PWT , and load value of PLOAD are assumed to be provided
by proper prediction methods during optimization. The actual
values, however, would be different from the predicted ones.
Wewill pursue this problem through the followingmathemat-
ical formulation.

A. PROBLEM FORMULATION
As shown in FIGURE 1, both the total cumulative power con-
sumption and the peak power must be controlled to minimize
the electricity bill. For simplicity, from now on, all power con-
version efficiencies and battery charge/discharge efficiencies
are ignored; therefore the total instantaneous power PGRID(t)
supplied from/to AC-grid is,

PGRID(t)=PESS (t)+PEV (t)+PLOAD(t)−PPV (t)−PWT (t)

(1)

And (1) also stands for the power balance condition in
DCBUS . The relationship between the BESS SoC and BESS
power, that is, BSoC and PESS , can be expressed as,

BSoC (t) = BSoC (t − 1)+
100
EESS

1TsPESS (t) (2)

where, EESS is the maximum amount of energy that battery
can hold. BSoC (t) and BSoC (t − 1) are battery SoC at time
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t and t-1, respectively. 1Ts is time interval for updating the
charging/discharging action.

Also, the relationship between the EV SoC and EV charger
power, that is, BEV and PEV , can be expressed as,

BEV (t) = BEV (t − 1)+
100
EEV

1TsPEV (t) (3)

where,EEV is themaximum amount of energy that EV battery
can hold. BEV (t) and BEV (t − 1) are EV battery SoC at time
t and t-1, respectively.

There are physical limitations such as power ratings of the
system components and battery SoC and that are written as,

PGRID,Min ≤ PGRID (t) ≤ PGRID,Max (4)

PESS,Min ≤ PESS (t) ≤ PESS,Max (5)

PEV ,Min ≤ PEV (t) ≤ PEV ,Max (6)

BSoC,Min ≤ BSoC (t) ≤ BSoC,Max (7)

BEV ,Min ≤ BEV (t) ≤ BEV ,Max (8)

Also, charging and discharging power is directly related to
the momentarily battery SoC levels and the total energy of
BESS and EV as,(

BSoC,Min − BSoC (t − 1)
) EESS
100

≤ PESS (t) 1Ts (9)

PESS (t) 1Ts ≤
(
BSoC,Max − BSoC (t − 1)

) EESS
100

(10)(
BEV ,Min − BEV (t − 1)

) EEV
100

≤ PEV (t) 1Ts (11)

PEV (t) 1Ts ≤
(
BEV ,Max − BEV (t − 1)

) EEV
100

(12)

In addition to the simple relationship between the SoC level
and the charging power given in (9- 12), the battery charging
profile determined by the SoC level is also an essential factor
affecting PESS and PEV . However, the charging profile forms
another layer of analytical complexity, at least in this context,
and to highlight the advantages of the proposed method,
the battery charging profile and the battery roundtrip effi-
ciency are neglected. Likewise, in order to solely emphasize
the advantages and the effectiveness of the proposed cost
function, it may be better to interpret the interactions among
essential MG units such as BESS, PV, and Load only. So, (1)
is minimized to (13),

PGRID (t) = PESS (t)+ PLOAD (t)− PPV (t) (13)

In II-E, EV charging feature is introduced to show the
extendibility of the proposed method.

B. CONVENTIONAL QP OBJECTIVE FUNCTION
The QP optimization process will find an optimal solution
minimizing the objective function J while satisfying all the
constraints given. Following is the conventional objective
function suggested in [25] and basically [26] have the same

form except the quadratic term with a gain of cSoC ,

J = min
N∑
t=1

{
cGRID (t)PGRID (t)+ cSoC [BSoC (t)

−BSoC (t − 1)]2
}

(14)

where, cGRID (t) can be the electricity tariff for different times
of the day and cSoC is a weighting factor that limits the charge
/ discharge power of the BESS.

However, in contrast with the claims of [25], [26], the ESS
power dispatching issues in MG using a QP may have more
issues when considering the unexpected variation of renew-
ables are appearing. Following is the equality constraints
for the BESS SoC level at a specific time (24:00) given
in [25], [26],{

BSoC (24 : 00) = 100% [26]
BSoC (24 : 00) = BSoC (0) [25]

(15)

where, BSoC (24 : 00) is the equality constraint at 24:00 and
BSoC (0) is the initial constraint that is used for the day before.

During the optimization process, decision variables in the
objective function will converge to certain optimal values
minimizing J numerically. There are inequality constraints
that form a possible range of solutions like (4) ∼ (12), but
the equality constraint (15) significantly narrows the range of
available solutions. Therefore, due to the intermittent nature
of DCMG, the solution may be limited or invalidated during
optimization.

C. PROPOSED QP OBJECTIVE FUNCTION
Instead, we may be able to avoid using the problematic
equality constraints by adopting a simple control structure to
manage the SoC of BESS in the objective function.

The proposed SoC tracking objective function J is as fol-
lows,

J = min
N∑
t=1

{
cGRID (t)PGRID (t)+ cSoC

[
B∗SoC (t)

−BSoC (t)]2
}

(16)

where, in this case, cSoC is the weighting factor of the SoC
reference tracking performance, B∗SoC is the target SoC of the
battery.

Here, B∗SoC (t), which is an SoC level reference, is newly
introduced for a BESS SoC level management. The primary
purpose is to include the SoC level term in the cost function
without having the equality constraint, and B∗SoC (t) can be
changed as needed, which is in the case of protecting the
battery from overcharging or expecting considerable surplus
energy in the future, etc. When the gap between B∗SoC (t) and
BSoC (t) is large, the QP solver sees it as the increment in
cost, and it tries to find the optimal PESS (t) to reduce the
discrepancy so that the battery SoC is managed. Therefore,
we can make the QP avoid using a strict equality constraint,
which may end up in a failure during optimization. This issue
can be easily observed in the following simulation cases in III.
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D. FORMULATIONS FOR THE QUADRATIC
PROGRAMMING
Following is the standard form of the QP used in QP
solver [27], where x is the state vector that contains the state
variables and the decision variables. The QP solver tries to
find x that meets the given constraints in such a way that the
objective function is minimized. H and f are the quadratic-
term matrices and the first-order vector, respectively. Aieq
and bieq are for the inequality constraint matrix and vector,
Aeq and beq are equality constraint matrix and vector, and lb
and ub are the lower and upper bounds of the state vector x,
respectively as,

min
x

1
2
xTHx+ f T

such that


Aieqx ≤ bieq
Aeqx = beq
lb ≤ x ≤ ub

(17)

To optimize the objective function using the QP solver,
we need to reconstruct the target function as well as the
constraints into standard matrices and vector format. Also,
as adopted in [26], the receding horizon method considering
the N-step in the future is used to obtain the power dispatch
value for the next time step.

Besides that, a more efficient and more straightforward
way to describe the objective function by minimizing the size
of the state vector is addressed. As a result, the computational
burden is significantly reduced, and it is suitable for real-time
applications.

1) THE PROPOSED OBJECTIVE FUNCTION
For the given N -sized receding horizon, (13) can be rewritten
as,

PG (t) = PN (t)+ PL (t)− dN (t) (18)

where,

PG (t) =


PGRID (t)

PGRID (t + 1)
...

PGRID (t + N − 1)


N×1

,

PN (t) =


PESS (t)

PESS (t + 1)
...

PESS (t + N − 1)


N×1

,

PL (t) =


PLOAD (t)

PLOAD (t + 1)
...

PLOAD (t + N − 1)


N×1

,

dN (t) =


PPV (t)

PPV (t + 1)
...

PPV (t + N − 1)


N×1

.

and (16) can be reorganized in a matrix form as,

J = min

(
cG (t)TPG (t)

+cSoC
[
BN (t)− B∗N (t)

]T [BN (t)− B∗N (t)
] )
(19)

where,

cG (t) =


cGRID (t)

cGRID (t + 1)
...

cGRID (t + N − 1)


N×1

,

BN (t) =


BSoC (t)

BSoC (t + 1)
...

BSoC (t + N − 1)


N×1

,

B∗N (t) =


B∗SoC (t)

B∗SoC (t + 1)
...

B∗SoC (t + N − 1)


N×1

.

It is assumed that PL (t) and dN (t) are available at each
time step. The equality constraints, the inequality constraints,
and upper/lower bound, can be reformed into the vector for-
mats as,

PG (t) = PN (t) = PL (t)− dN (t) (20)

BN (t) =
100
EESS

1TsPN (t)+ BN (t − 1) (21)[
BSoC,Min1N×1 − BN (t − 1)

] EESS
100

≤ PN (t) 1Ts (22)

PN (t) 1Ts ≤
[
BSoC,Max1N×1 − BN (t − 1)

] EESS
100

(23)

PGRID,Min ≤ PG (t) ≤ PGRID,Max (24)

PESS,Min ≤ PN (t) ≤ PESS,Max (25)

BSoC,Min ≤ BN (t) ≤ BSoC,Max (26)

where, 1m×n is a one-valued m× n matrix.
In earlier approaches [25], [26], for the QP, the state vector

x containing decision variables was defined as,

x =
[
PG (t)T BN (t)T PN (t)T

]T
(27)

Note that, however, PG (t) can be replaced by PL (t), dN (t)
and PN (t) from the relations of (20). And BN (t) in (21)
can be rewritten in a matrix form using PN (t) according
to [28]. Taking this into account, PN can be the only decision
variable, and the remaining state variables of x given in (27)
are removed. Finally, the state vector x as well as the corre-
sponding objective function J become,

x= [PN (t)]N×1 (28)
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J =min


cG (t)TPN (t)+

cSoC

[(
100
EESS

1Ts

)
LTPN (t)+BSoC0−B∗N (t)

]T
×

[(
100
EESS

1Ts

)
LTPN (t)+BSoC0−B∗N (t)

]


(29)

And the resulting H and f are as,

H =

[
2cSoC

(
100
EESS

1Ts

)2

UT LT

]
N×N

(30)

where, LT def

 1 0 0
... 1 0
1 · · · 1


N×N

,

UT defLTT =

 1 · · · 1

0 1
...

0 0 1


N×N

f =

cG (t)−2cSoC (
100
EESS

1Ts)(B∗N (t)−BSoC0 (t))

N...
1



N×1
(31)

Lower and upper bound constraints (lb, ub) can be given
simply as,

lb =
[
PESS,Min1N×1

]
, ub =

[
PESS,Max1N×1

]
(32)

And the other constraints are represented as,

Aieq =


Aieq1
Aieq2
Aieq3
Aieq4


4N×N

, bieq =


bieq1
bieq2
bieq3
bieq4


4N×1

(33)

where, Aieq1 = IN , bieq1 = PGRID,Max1N×1 − PL + dN,
Aieq2 = −IN , bieq2 = −(PGRID,Min1N×1−PL+ dN), Aieq3 =
100
EESS

1TsINLT, bieq3 = (BSoC,Max − BSoC (0))1N×1, Aieq4 =
−

100
EESS

1TsINLT, bieq4 = −
(
BSoC,Min − BSoC (0)

)
1N×1,

and IN is N × N identity matrix.
As a result, reducing the size of the matrix obtained by

converting from equations (19) to (29) shortens the run time
of the QP optimizer and when simulated with N = 144 for
24 hours and for a total of 2 days, the total optimization time
taken is approximately 58% reduced (43.36 sec→ 18.11sec)
under the QP solver ‘‘quadprog’’ in the Optimization Toolbox
in MATLAB [27] with the default solver setting on an Intel
Core i7-10510U.

2) THE CONVENTIONAL OBJECTIVE FUNCTION
The power balance condition given in (18) does not change
with the objective function, and the conventional objective
function (14), as well as the strict equality constraints (15),
is represented as,

J = min

 cG (t)TPG (t)
+cSoC [BN (t)− BN (t − 1)]T

[BN (t)− BN (t − 1)]

 (34)

The coefficient matrix H and f for the QP becomes,

H =

 0N×N 0N×N 0N×N
0N×N hN×N 0N×N
0N×N 0N×N 0N×N


3N×3N

(35)

where, 0m×n is m× n matrix filled with zeros, and

hN×N = 2cSoC

{[
LT−1 + UT−1

]
N×N

−

[
0(N−1)×(N−1) 0(N−1)×1
01×(N−1) 1

]
N×N

}

f =


cG (t)

−2cSoCBSoC (0)
0(N−1)×1
0N×1


3N×1

(36)

E. EXTENSION TO EV CHARGING
When EV chargers are installed in a DCMG, the power
balance equation (13) is extended as,

PGRID (t) = PESS (t)+ PEV (t)+ PLOAD (t)− PPV (t)

(37)

And the respective cost function J in (16) for (13) will include
the EV charging term as,

J = min
N∑
t=1


cGRID (t)PGRID (t)+ cSoC[
B∗SoC (t)− BSoC (t)

]2
+cEV ,i

[
P∗EV ,i (t)− PEV ,i (t)

]2
, (38)

where P∗EV ,i is the reference charging power for the ith EV
and cEV ,i is the weighting factor for prioritizing the charging
sequence.
It is assumed that P∗EV ,is are provided by the BMSs of each

EVs, which has its own charging profile. Here the EV charg-
ing term, PEV ,i would be independent decision variables.
The reason is that the intermittent PV power, together with
the load in an MG, becomes a priority management target
to achieve the desired management goals such as shaving
peak power demand or minimizing electricity bills. Then
charging vehicles are considered by using surplus power at
some moments of a day. In this formulation, we assume that
V2G is not allowed.
For the given N -sized time horizon, (37) can be rewritten

considering k EV chargers are installed at DCMG as,

PG (t) = PN (t)+
k∑
i=1

PEV,i (t)+ PL (t)− dN (t) (39)

where, PEV,i (t) =


PEV ,i (t)

PEV ,i (t + 1)
...

PEV ,i (t + N − 1)


N×1

, and (38) can

be reorganized in a QPmatrix form considering multiple EVs
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using the condition (39) as,

J = min



cG (t)TPG (t)
+cSoC

[
BN (t)− B∗N (t)

]T[
BN (t)− B∗N (t)

]
+cEV ,1

[
PEV,1 (t)− P∗EV,1 (t)

]T[
PEV,1 (t)− P∗EV,1 (t)

]
+

...

cEV ,k

[
PEV,k (t)− P∗EV,k (t)

]T[
PEV,k (t)− P∗EV,k (t)

]


(40)

where, P∗EV,i (t) =


P∗EV ,i (t)

P∗EV ,i (t + 1)
...

P∗EV ,i (t + N − 1)


N×1

∣∣∣∣∣∣∣∣∣
i=1..k

.

For the EV charging, it shares the same formulation done
for BESS, PV, and load in (18-26). The EV parts, which
are P∗EV,i (t) and PEV,i (t), are introduced in a vector format
as (40). Similarly, the maximum charging power for ith EV is
bounded as,

0 ≤ PEV,i (t) ≤ PEV ,Max,i
∣∣
i=1..k (41)

And the final form of the state vector x considering EV
charging as well as the corresponding objective function J
become,

x

=
[
PN (t)T PEV,1 (t)T · · · PEV,k (t)T

]T
(k+1)N×1

(42)

J

= min



cG (t)TPN (t)

+cSoC
[(

100
EESS

1Ts
)
LTPN (t)+ BSoC0 − B∗N (t)

]T
×

[(
100
EESS

1Ts
)
LTPN (t)+ BSoC0 − B∗N (t)

]
+cEV ,1

[
PEV,1 (t)− P∗EV,1 (t)

]T[
PEV,1 (t)− P∗EV,1 (t)

]
+

...

cEV ,k

[
PEV,k (t)− P∗EV,k (t)

]T[
PEV,k (t)− P∗EV,k (t)

]


(43)

And the resulting H and f are as shown at the bottom of the
next page.
Lower and upper bound constraints (lb, ub) can be given
simply as,

lb =


PESS,Min1N×1

0N×1
...

0N×1


(k+1)N×1

,

TABLE 1. DCMG system parameters.

ub =


PESS,Max1N×1
PEV ,Max,11N×1

...

PEV ,Max,k1N×1


(k+1)N×1

(46)

And other inequality constraints are the same as (33).

III. COMPARISONS OF THE PROPOSED AND THE
CONVENTIONAL METHODS AND OTHER APPLICATIONS
In this section, comparisons of the conventional equality
constraint-based method and the proposed B∗SoC tracking
based method are performed. The DCMG system parameters
are given in TABLE 1. It is assumed that PL (t) and dN (t)
i.e., the exact predictions of future load and PV generation
are available at each time step. There are a few ways to
determine a building’s electricity bill in South Korea. If a
peak power meter is installed in a building, the annual base
rate is calculated by the largest power demand metered in the
period of July-September and December-February, including
the current month demand. In the United States and Japan,
the annual base rate is linked to the largest electricity demand
in the past 12 months, including the month at the time of rate
calculation (Duke Power, Tokyo Electric Power Company,
etc.) [29]. Therefore, one of the important reasons to invest
in an ESS in a building can be the peak power suppression to
get the minimum electricity bill.

A. THE ROBUSTNESS OF THE PROPOSED METHOD
As shown in FIGURE 2, the proposed method can always
keep the maximum power from the grid within 180 kW,
whereas the conventional method does not. On the top of
each figure in FIGURE 2, there are the letters ’P’ and ’F’,
indicating success and failure of QP result for all receding
horizons, respectively. In the analysis, there is a varying load
profile obtained from the statistical building load profile in
Korea [30]. As long as the solution exists, the maximum
power consumed can be suppressed by adjusting PGRID,Max
in (33). However, as shown in FIGURE 2 (b), the conven-
tional method cannot provide any optimum solution from
the beginning until it reaches the point where it can obtain
a feasible solution. There exist ways to find a solution for
the ESS dispatch by changing the equality constraint B∗SoC .
In FIGURE 2(b), the set point for B∗SoC at 24:00 is 90%, and
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FIGURE 2. Successful and unsuccessful ESS power dispatch using the
proposed and the conventional method: (a) the proposed B∗SoC tracking
method; (b) conventional method using BSoC in the equality constraint.

if we change the setpoint to a lower value the QP solver may
provide a solution. However, how much we decrease is still
unknown and can be found by trial and error.

In addition, it is also necessary to take into account the
unavoidable disturbances of the load or the PV. To make
a fair comparison, PGRID,Max is chosen to 200 kW so that
both cases have their own optimum solutions. If a sudden
load change occurs, it may not be able to obtain a solution
using the conventional method. For example, if there is a
change just before the moment when the equality constraint
is applied, the QP will never be able to take into account
the future changes until it encounters that change. Therefore,
if the difference between the estimated load and the actual
load begins to appear 4 hours ago, as shown in FIGURE 4 (b),

FIGURE 3. Successful ESS power dispatch of the proposed B∗SoC tracking
when unexpected disturbance appears in load: (a) PGRID, a day ahead
load profile PLOAD,EST, actual load PLOAD, PPV and the optimized result
PESS; (b) resulted battery SoC BSoC and its reference B∗SoC .

TABLE 2. Electricity price of utility [25].

the recent version of QP implementations [25], [26] cannot
give a solution at 24:00, but the proposed method can get
a solution for all receding horizon as shown in FIGURE 3.
In this case, the impact of QP failure is not very significant,
but it means there is a risk when optimization is performed
near the equality constraint.

B. ELECTRIC TARIFF COMPARISON
In this section, daily electric tariffs of the proposed and the
conventional method are compared. From the hourly electric
tariff used in [25] as shown in TABLE 2, daily accumu-

H =


2cSoC

(
100
EESS

1Ts
)2
UT LT 0N×N · · · 0N×N

0N×N 2cEV ,1IN 0N×N
...

... 0N×N
. . . 0N×N

0N×N · · · 0N×N 2cEV ,kIN


(k+1)N
×(k+1)N

(44)

f =


cG (t)− 2cSoC ( 100

EESS
1Ts)(B∗N (t)− BSoC0 (t))

N...
1


−2cEV ,1P∗EV,1 (t)

...

−2cEV ,kP∗EV,k (t)


(k+1)N×1

(45)
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FIGURE 4. Failure in ESS power dispatch of the conventional method
when unexpected load disturbance is appearing: (a) PGRID, a day ahead
load profile PLOAD,EST, actual load PLOAD, PPV and the optimized result
PESS; (b) resulted battery SoC BSoC and its reference B∗SoC .

FIGURE 5. Proposed B∗SoC tracking method with the hourly electricity
tariff: (a) PGRID, PLOAD, PPV and the optimized result PESS; (b) resulted
battery SoC BSoC and its reference B∗SoC .

lated rates are calculated and indicated in FIGURE 5 and
FIGURE 6. The maximum power coming from the grid,
PGRID,Max , is set to 200kW so both methods can provide a
solution for the given load and PV profile. Both methods
shares the same gain for cSoC which is 1/2000. As a result the
proposed method can make the electric bill 7 dollars cheaper
than the conventional method per day basis. It may mean that
there is not much performance difference in findingminimum
value of the electric tariff as it is dominated by the hourly
rates and can give out reasonable results. One thing to note is

FIGURE 6. Conventional method with the hourly electricity tariff: (a)
PGRID, PLOAD, PPV, and the optimized result PESS; (b) resulted battery SoC
BSoC and its reference B∗SoC .

that there are differences in ESS SoC rising slope and falling
slope. The proposed method charges/discharges ESS battery
as long as there is remaining power keeping the PGRID,Max
limit, while the conventional method adjust the slope as low
as possible.

C. ELECTRIC POWER RESERVE RATE
One very important feature of the MG is the ancillary sup-
port capability. Among them, the frequency support [31] that
requires active power, which was originally supported by
the exclusive synchronous generators connected to the grid.
It requires a certain amount of energy to be transferred from
or to the grid for a certain period. Then it is important to
maintain the SoC level of the ESS to react immediately the
ancillary support demands. In that aspect, if the SoC level
is retained tightly as a result of the optimization, then it is
possible to use the spared energy for the ancillary services.
As shown in FIGURE 7 (a), the proposed method can control
the deviation between BSoC and B∗SoC by adjusting cSoC , but
the existing method is independent of gain change as shown
in Figure 7 (b).

D. EV Charging Scenario with multiple EVs
Simulation is performed for the EV charging scinario in
FIGURE 8. There are three different EVs charging at three
different moments of a day. As described in II- E, we assumed
that the EV charging power reference P∗EV ,i (t) is given by
the respective ith BMS of the car. The power dispatching is
done while satisfying the DCMG optimization target, which
is peak power shaving to 200kW. Each EV’smaximum charg-
ing power is limited to 50kW, and all cars are connected
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FIGURE 7. Comparison of the electric power reserve rate for different
cSoC: (a)Proposed method; (b) Conventional method.

FIGURE 8. Proposed B∗SoC tracking method with multiple EV charging:
(a) PGRID, PLOAD, PPV and the optimized result of PESS ; (b) resulted
battery SoC BSoC

(
B∗SoC = 90%

)
, each EV SoC (BEV ,1, BEV ,2, and BEV ,3)

and EV charging power (PEV ,1, PEV ,2, and PEV ,3).

with batteries depleted. The charging profile used in this
simulation is obtained by the currently available EV charging
profile in nowadays EV market. EV #1 is connected around
07:00 and PEV ,1 has reached its maximum power roughly
for an hour and decayed to zero after an hour. During that
time, there is a margin of PGRID until reaching the 200kW

FIGURE 9. The 3D-map of the estimated PV power generation based on
the time horizon and the estimation hour.

level; EV #1 is charged without delay. However, when PEV ,2
is engaged around 13:00, the load demand is too high even
the PV is delivering large portion of the load. As we can see,
PEV ,2 is reached its maximum power but decreased quickly,
and it is not charging from 15:00∼16:00 even though it’s
SoC is not reached 100% and charged long time after. This
behavior can be explained that the QP prioritizes the DCMG
optimization goal than the EV #2 charging request. The last
EV, when the load is far below 200kW EV #3, is connected.
In that case, PEV ,3 is reached its maximum charging speed as
nothing is hindering from charging.

E. PARTICIPATION IN THE ELECTRIC POWER BIDDING
MARKETS
The proposed cost function can be a QP canonical form in
the aspect of including additional components (such as EVs,
ESSs, other VREs, and loads) in MG, having dealt with
the futuristic information to decide the best action at that
moment. Therefore, this feature can be easily extended to
the different timescales of the electricity markets such as
the long-term daily market(over one day) and the intraday
market, the deviation management market (few hours ahead),
and even the regulation service market depending on the
resolution and the size of the time horizon [24], [32]. The
timely power dispatching requirements for the bidding mar-
ket can also be satisfied by manipulating QP constraints, and
the proposed cost function-based QP can react to meet the
momentary goal in the time horizon.

IV. REAL-TIME IMPLEMENTATION ISSUES
The previous sections shows the effectiveness and the robust-
ness of the proposed cost function under the ideal assumption
that the exact predictions of future load and PV generation are
available at each time step. In this section, we will discuss the
impact of wrong predictions of dN (t), which is unavoidable
in real time applications.

FIGURE 9 depicts a 3D-map of the estimated PV power
profile for each time horizon. The x-axis represents the
passage of time (time horizon), and the y-axis is the axis
for hourly forecasts with the estimation accuracy given
in Table 3 [33]. And the z-axis is the amount of PV power gen-
eration. The black line pointing in the same direction as the
y-axis is forecasted value in the near future order starting from
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TABLE 3. Hourly forecast accuracies of PV power generation [33].

FIGURE 10. The comparison between the ideal (assuming that we know
the exact future) and the real (estimates based) QP optimization results
using the proposed objective function: (a) Ideal (PGRID,Ideal) and realistic
(PGRID,Real) cases of PGRID; (b) resulting ideal (BSoC,Ideal) and realistic
(BSoC,Real) battery SoC of ESS.

t0 and is relocated alongwith the x-axis to show the difference
between the actual and the estimates. Let us assume that we
are at time t0 and perform the QP optimization to decide
PESS for the next time period. However, due to the PV esti-
mation error, the instantaneous optimal power dispatch may
be missed out and the discrepancies affect continuously to the
result during the optimization. As shown in FIGURE 10 (a),
the mismatch between the measured PPV , PPV ,Actual , and the
estimated PPV_EST@X at each time of x results in a deviation
between PGRID,Real and PGRID,Ideal . Therefore, as shown in
FIGURE 10 (b), the SoC of the BESS drops 10% more than
the ideal case, indicating a loss in the electric power reserve
rate. In particular, in the ideal case BSoC,Ideal , it increases the
SoC valley point by making BSoC higher than the reference
value B∗SoC = 70% during 11:00 to 16:00, but in the actual
situation, this effect is diminished and BSoC utilization is also
reduced as in BSoC,Real . Considering that the target SoC level
is a factor that determines the minimum value of BSoC , this
SoC level issue can be compensated by giving a higher SoC
reference and the result is shown in BSoC,NewReal . However,

FIGURE 11. The QP result of the proposed cost function w/ forcast error
(Real), and w/o forecast error (Ideal): (a) Ideal (PGRID,Ideal) and realistic
(PGRID,Real) cases of PGRID at low PV generation: (b) Resulting ideal
(BSoC,Ideal) and realistic (BSoC,Real) battery SoC together with the target
SoC (B∗SoC ).

FIGURE 12. The QP result of the conventional cost function w/ forcast
error (Real), and w/o forecast error (Ideal): (a) Ideal (PGRID,Ideal) and
realistic (PGRID,Real) cases of PGRID; (b) Resulting ideal (BSoC,Ideal) and
realistic (BSoC,Real) battery SoC together with the target SoC at 24:00
(BSoC (24)).

to run the BESS in an optimal manner for the given objective
function, we need to preserve an extra SoC room to charge the
surplus energy. The room can be determined by taking into
account environmental factors such as season and weather,
as well as the prediction accuracy of load and solar power.
However, it can be seen that BSoC,Real accurately follows the
ideal SoC trajectory when the amount of PV power gener-
ation is small, that is, when the ratio of prediction error is
small compared to the maximum power of PV as shown in
FIGURE 11.
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On the contrary, it can be seen from FIGURE 12 that
the conventional objective function fails to optimize at the
beginning of the optimization, it misses the timely charging
action around 05:00 ∼ 08:00 due to the small discrepancy
between the actual and the estimates. Therefore, it bring an
error between BSoC,Real and BSoC,Ideal throughout the opti-
mization. The red-shaded area means failure to limit the input
power due to the optimization failure.

V. CONCLUSION
In this paper, an extended and computationally simplified QP
cost function for ESS power dispatch in MG has been sug-
gested. More practical issues, accompanied by its real-time
implementation, are addressed and a considerable amount of
analysis has shown the proper usage of the equality constraint
that may lead to a failure in obtaining successive power
dispatch of an ESS. Also, an effective and systematic way to
include EVs in QP has been proposed. As a result, it systemat-
ically manages the appearance of EVs in the economic oper-
ation of ESS power management. And, the smarter way of
decreasing the size of the cost function Hessian matrix is sug-
gested and resulted in 58% of computation time reduction by
decreasing the matrix size by 1/3. Moreover, practical issues
of using forecasts in real-time optimization are addressed.
Due to the unavoidable forecast error, the performance degra-
dation of the optimization is inevitable, and a guideline to
compensate for this is suggested. Furthermore, the advantage
of the proposed cost function exposed to the forecast error
is shown and used for emphasizing the robustness of the
proposed method.
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